Tetrahedron Letters No. 10, pp. 21-22, 1959. Pergamon Press Ltd. Printed in Great Britain.

THE STEREOCHEMISTRY OF ISOPHYLLOCLADENE

P. K. Grant and R. Hodges

Dominion Laboratory, Wellington, New Zealand and Chemistry Department, University of Glasgow

(Received 7 July 1959)

ISOPHYLLOCIADENE has been converted into podocarp-8(14)-en-13-one (I), identical with a sample prepared from manool. Hence isophyllocladene must possess the "normal" trans A/B ring junction, since the reactions employed do not permit the possibility of inversion at these centres. As Djerassi² has already pointed out that only one structure possessing this ring fusion is permitted by rotatory dispersion evidence, isophyllocladene must be as depicted in (II).

¹ J. R. Hosking, <u>Ber.</u> 69, 780 (1936).

² C. Djerassi, M. Cais and C. A. Mitscher, <u>J. Amer. Chem. Soc.</u> <u>81</u>, 2386 (1959).

Hydroxylation of isophyllocladene with osmium tetroxide gave the known dihydro-15,16-dihydroxyphyllocladene. When this was oxidised with lead tetracetate, 13β -acetyl-8 β -aldehydopodocarpane was formed, m.p. 138- 140° , [a] $_{\rm D}$ - 39° . The derived dioxime was dehydrated with acetic anhydride to give the oxime of 13β -acetyl-8 β -cyanopodocarpane, m.p. 195- 197° , [a] $_{\rm D}$ - 13° .

The parent ketone was regenerated and subjected to the action of pertrifluoroacetic acid. After hydrolysis of the resulting acetate, 8β -cyano-13-hydroxypodocarpane was produced, m.p. 95- 115° . No attempt was made to separate this mixture of 13-hydroxy-isomers, but oxidation with chromium trioxide gave 8β -cyano-13-oxopodocarpane, m.p. 160- 161° (with prior melting and resolidification at 153-154. 5°), [a] $_{\rm D}$ + 35° . When this substance was distilled from powdered potassium hydroxide at $120^{\circ}/0$.01 mm, hydrogen cyanide was eliminated, giving podocarp-8(14)-en-13-one, m.p. 64- 66° , [a] $_{\rm D}$ + 45° , $\lambda_{\rm max}$ (MeOH) 242.5 mµ, \leftarrow = 16,000. A specimen of the same material prepared from manool had m.p. 64- 66° , [a] $_{\rm D}$ + 49° , $\lambda_{\rm max}$ (MeOH) 242.5 mµ, \leftarrow = 16,400. The infra-red spectra of the two samples in CCl $_{\rm A}$ were identical. All rotations were measured in chloroform at 18° , and satisfactory analyses have been obtained for all the compounds reported.

The authors express their thanks to Professor R. A. Raphael for his advice and encouragement.

³ C. W. Brandt, <u>New Zealand J. Sci. Technol.</u> 34B, 46 (1952).